All the vital guides are with here that may help you prepare for your Cisco 400-101 exam. We have designed our Study guides, Q&As with Detailed Explanations, Full Preparation labs to ensure a person pass your analyze on the very first try. The Pdf files are printable as well as portable. You can carry all of them with a person and review the Cisco exam questions as well as answers anytime and anyplace. If you dont pass the Cisco Cisco exam, Testking.com can offer a person full refund or even another no cost product according to your require. You should contact our buyer support as well as claim the exam dump youd like. If you claim the full income , you should email us the failed transcript. Our workers can remit you right after making sure your details.

2021 Dec ccie 400 101:

Q491. Which type of EIGRP routes are summarized by the auto-summary command? 

A. internal routes that are learned from a peer that is outside the range of local network statements 

B. external routes that are learned from a peer that is inside the range of local network statements 

C. locally created routes that are outside the range of local network statements 

D. external routes that are learned from a peer that is outside the range of local network statements 

Answer:

Explanation: 

Auto-Summarization of External Routes 

EIGRP will not auto-summarize external routes unless there is a component of the same major network that is an internal route. To illustrate, let us look at Figure 15. 

Router Three is injecting external routes to 192.1.2.0/26 and 192.1.2.64/26 into EIGRP using the redistribute connected command, as shown in the configurations below. 

Router Three 

interface Ethernet0 

ip address 192.1.2.1 255.255.255.192 

interface Ethernet1 

ip address 192.1.2.65 255.255.255.192 

interface Ethernet2 

ip address 10.1.2.1 255.255.255.0 

!router eigrp 2000 

redistribute connected 

network 10.0.0.0 

default-metric 10000 1 255 1 1500 

With this configuration on Router Three, the routing table on Router One shows: 

one# show ip route 

10.0.0.0/8 is subnetted, 2 subnets 

D 10.1.2.0 [90/11023872] via 10.1.50.2, 00:02:03, Serial0 

C 10.1.50.0 is directly connected, Serial0 

192.1.2.0/26 is subnetted, 1 subnets 

D EX 192.1.2.0 [170/11049472] via 10.1.50.2, 00:00:53, Serial0 

D EX 192.1.2.64 [170/11049472] via 10.1.50.2, 00:00:53, Serial0 

Although auto-summary normally causes Router Three to summarize the 192.1.2.0/26 and 192.1.2.64/26 routes into one major net destination (192.1.2.0/24), it does not do this because both routes are external. However, if you reconfigure the link between Routers Two and Three to 192.1.2.128/26, and add network statements for this network on Routers Two and Three, the 192.1.2.0/24 auto-summary is then generated on Router Two. 

Router Three 

interface Ethernet0 

ip address 192.1.2.1 255.255.255.192 

interface Ethernet1 

ip address 192.1.2.65 255.255.255.192 

interface Serial0 

ip address 192.1.2.130 255.255.255.192 

router eigrp 2000 network 192.1.2.0 

Now Router Two generates the summary for 192.1.2.0/24: 

two# show ip route 

D 192.1.2.0/24 is a summary, 00:06:48, Null0 

And Router One shows only the summary routE. 

one# show ip route 

10.0.0.0/8 is subnetted, 1 subnets 

C 10.1.1.0 is directly connected, Serial0 

D 192.1.2.0/24 [90/11023872] via 10.1.50.2, 00:00:36, Serial0 

Reference: http://www.cisco.com/c/en/us/support/docs/ip/enhanced-interior-gateway-routing-protocol-eigrp/16406-eigrp-toc.html 


Q492. Which two statements about Inverse ARP are true? (Choose two.) 

A. It uses the same operation code as ARP. 

B. It uses the same packet format as ARP. 

C. It uses ARP stuffing. 

D. It supports static mapping. 

E. It translates Layer 2 addresses to Layer 3 addresses. 

F. It translates Layer 3 addresses to Layer 2 addresses. 

Answer: B,E 

Explanation: 

Inverse Address Resolution Protocol (Inverse ARP or InARP) is used to obtain Network Layer addresses (for example, IP addresses) of other nodes from Data Link Layer (Layer 2) addresses. It is primarily used in Frame Relay (DLCI) and ATM networks, in which Layer 2 addresses of virtual circuits are sometimes obtained from Layer 2 signaling, and the corresponding Layer 3 addresses must be available before those virtual circuits can be used. 

Since ARP translates Layer 3 addresses to Layer 2 addresses, InARP may be described as its inverse. In addition, InARP is implemented as a protocol extension to ARP: it uses the same packet format as ARP, but different operation codes. 

Reference: http://en.wikipedia.org/wiki/Address_Resolution_Protocol 


Q493. Which three statements are true about an EtherChannel? (Choose three.) 

A. PAGP and LACP can be configured on the same switch if the switch is not in the same EtherChannel. 

B. EtherChannel ports in suspended state can receive BPDUs but cannot send them. 

C. An EtherChannel forms between trunks that are using different native VLANs. 

D. LACP can operate in both half duplex and full duplex, if the duplex setting is the same on both ends. 

E. Ports with different spanning-tree path costs can form an EtherChannel. 

Answer: A,B,E 

Explanation: 

Answer A. EtherChannel groups running PAgP and LACP can coexist on the same switch or on different switches in the stack. Individual EtherChannel groups can run either PAgP or LACP, but they cannot interoperate. 

Answer B: 

EtherChannel Member Port States 

Port States 

Description 

bundled 

The port is part of an EtherChannel and can send and receive BPDUs and data traffic. 

suspended 

The port is not part of an EtherChannel. The port can receive BPDUs but cannot send them. Data traffic is blocked. 

standalone 

The port is not bundled in an EtherChannel. The port functions as a standalone data port. The port can send and receive BPDUs and data traffic. 

Answer E. Ports with different spanning-tree path costs can form an EtherChannel if they are otherwise compatibly configured. Setting different spanning-tree path costs does not, by itself, make ports incompatible for the formation of an EtherChannel. 

Reference: http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst2960x/software/15-0_2_EX/layer2/configuration_guide/b_lay2_152ex_2960-x_cg/b_lay2_152ex_2960-x_cg_chapter_010.html 


Q494. Refer to the exhibit. 

Which two commands are required on R3 in order for MPLS to function? (Choose two.) 

A. mpls ip 

B. ip cef 

C. mpls label protocol tdp 

D. mpls ip propagate-ttl 

Answer: A,B 


Most up-to-date ccie pdf download:

Q495. Which two options are EEM policies? (Choose two.) 

A. applets 

B. event detectors 

C. scripts 

D. syslogs 

E. actions 

Answer: A,C 


Q496. DRAG DROP 

Drag and drop the OSPF network type on the left to the correct traffic type category on the right. 

Answer: 


Q497. Which statement about the OSPF Loop-Free Alternate feature is true? 

A. It is supported on routers that are configured with virtual links. 

B. It is supported in VRF OSPF instances. 

C. It is supported when a traffic engineering tunnel interface is protected. 

D. It is supported when traffic can be redirected to a primary neighbor. 

Answer:

Explanation: 

Restrictions for OSPF IPv4 Remote Loop-Free Alternate IP Fast Reroute 

. The OSPF IPv4 Remote Loop-Free Alternate IP Fast Reroute feature is not supported on devices that are virtual links headends. 

. The feature is supported only in global VPN routing and forwarding (VRF) OSPF 

Instances. 

. The only supported tunneling method is MPLS. 

. You cannot configure a traffic engineering (TE) tunnel interface as a protected interface. Use the MPLS Traffic Engineering—Fast Reroute Link and Node Protection feature to protect these tunnels. For more information, see the “MPLS Traffic Engineering—Fast Reroute Link and Node Protection” section in the Multiprotocol Label Switching Configuration Guide. 

. You can configure a TE tunnel interface in a repair path, but OSPF will not verify the tunnel’s placement; you must ensure that it is not crossing the physical interface that it is intended to protect. 

. Not all routes can have repair paths. Multipath primary routes might have repair paths for all, some, or no primary paths, depending on the network topology, the connectivity of the computing router, and the attributes required of repair paths. 

. Devices that can be selected as tunnel termination points must have a /32 address advertised in the area in which remote LFA is enabled. This address will be used as a tunnel termination IP. If the device does not advertise a /32 address, it may not be used for remote LFA tunnel termination. 

. All devices in the network that can be selected as tunnel termination points must be configured to accept targeted LDP sessions using the mpls ldp discovery targeted-hello accept command. 

Reference: http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_ospf/configuration/xe-3s/iro-xe-3s-book/iro-ipfrr-lfa.html 


Q498. Which action does route poisoning take that serves as a loop-prevention method? 

A. It immediately sends routing updates with an unreachable metric to all devices. 

B. It immediately sends routing updates with a metric of 255 to all devices. 

C. It prohibits a router from advertising back onto the interface from which it was learned. 

D. It advertises a route with an unreachable metric back onto the interface from which it was learned. 

E. It poisons the route by tagging it uniquely within the network. 

Answer:

Explanation: 

With route poisoning, when a router detects that one of its connected routes has failed, the router will poison the route by assigning an infinite metric to it and advertising it to neighbors. 


Q499. Which multicast protocol uses source trees and RPF? 

A. DVMRP 

B. PIM sparse mode 

C. CBT 

D. mOSPF 

Answer:

Explanation: 

DVMRP builds a parent-child database using a constrained multicast model to build a forwarding tree rooted at the source of the multicast packets. Multicast packets are initially flooded down this source tree. If redundant paths are on the source tree, packets are not forwarded along those paths. Forwarding occurs until prune messages are received on those parent-child links, which further constrains the broadcast of multicast packets. 

Reference: DVMRP and dense-mode PIM use only source trees and use RPF as previously described. 

Reference: http://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3550/software/release/12-1_19_ea1/configuration/guide/3550scg/swmcast.html